15,336 research outputs found

    Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka

    Get PDF
    Although single-domain particles of biogenic magnetite have been found in different species of pelagic fishes, nothing is known about when it is synthesized, or about whether the time during life when it is produced is correlated with the development of responses to magnetic field stimuli. We have investigated production of biogenic magnetite suitable for use in magnetoreception in different life stages of the sockeye salmon, Oncorhynchus nerka (Walbaum). Sockeye salmon were chosen because responses in orientation arenas to magnetic field stimuli have been demonstrated in both fry and smolt stages of this species. We found significant quantities of single-domain magnetite in connective tissue from the ethmoid region of the skull of adult (4-year-old) sockeye salmon. The ontogenetic study revealed an orderly increase in the amount of magnetic material in the same region of the skull but not in other tissues of sockeye salmon fry, yearlings and smolts. The physical properties of this material closely matched those of magnetite particles extracted from the ethmoid tissue of the adult fish. We suggest that single-domain magnetite particles suitable for use in magnetoreception are produced throughout life in the ethmoid region of the skull in sockeye salmon. Based on theoretical calculations, we conclude that there are enough particles present in the skulls of the fry to mediate their responses to magnetic field direction. By the smolt stage, the amount of magnetite present in the front of the skull is sufficient to provide the fish with a magnetoreceptor capable of detecting small changes in the intensity of the geomagnetic field. Other tissues of the salmon, such as the eye and skin, often contained ferromagnetic material, although the magnetizations of these tissues were usually more variable than in the ethmoid tissue. These deposits of unidentified magnetic material, some of which may be magnetite, appear almost exclusively in adults and so would not be useful in magnetoreception by young fish. We suggest that tissue from within the ethmoid region of the skull in pelagic fishes is the only site yet identified where magnetite suitable for use in magnetoreception is concentrated

    Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices

    No full text
    Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    Mechanisms of kinetic trapping in self-assembly and phase transformation

    Get PDF
    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions

    Half-metallic ferromagnets: From band structure to many-body effects

    Get PDF
    A review of new developments in theoretical and experimental electronic structure investigations of half-metallic ferromagnets (HMF) is presented. Being semiconductors for one spin projection and metals for another ones, these substances are promising magnetic materials for applications in spintronics (i.e., spin-dependent electronics). Classification of HMF by the peculiarities of their electronic structure and chemical bonding is discussed. Effects of electron-magnon interaction in HMF and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered. Especial attention is paid to appearance of non-quasiparticle states in the energy gap, which provide an instructive example of essentially many-body features in the electronic structure. State-of-art electronic calculations for correlated dd-systems is discussed, and results for specific HMF (Heusler alloys, zinc-blende structure compounds, CrO2,_{2}, Fe3_{3}O4_{4}) are reviewed.Comment: to be published in Reviews of Modern Physics, vol 80, issue

    Photometric Variability in the Faint Sky Variability Survey

    Get PDF
    The Faint Sky Variability Survey (FSVS) is aimed at finding photometric and/or astrometric variable objects between 16th and 24th mag on time-scales between tens of minutes and years with photometric precisions ranging from 3 millimag to 0.2 mag. An area of 23 deg2^2, located at mid and high Galactic latitudes, was covered using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) on La Palma. Here we present some preliminary results on the variability of sources in the FSVS.Comment: 4 pages, 3 figures, to appear in 14th European Workshop on White Dwarfs, ASP Conference Series, eds. D. Koester, S. Moehle

    Stability of the Higgs mass in theories with extra dimensions

    Get PDF
    We analyze the ultraviolet stability of the Higgs mass in recently proposed Kaluza-Klein models compactified on S_1/Z_2 or S_1/(Z_2\times Z_2'), both at the field theory and string theory level. Fayet-Iliopoulos terms of U(1) hypercharge are shown to be of vital importance for this discussion. Models with a single Higgs doublet seem to be generically affected by quadratic divergences.Comment: Contribution to the Proceedings of Durham IPPP meeting May 2001.(12 pages, LaTeX

    A first--order irreversible thermodynamic approach to a simple energy converter

    Full text link
    Several authors have shown that dissipative thermal cycle models based on Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of First-Order Irreversible Thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function against efficiency. In a previous work Stucki [J.W. Stucki, Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in ATP-synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state simultaneously at minimum entropy production and maximum efficiency, by means of a conductance matching condition between extreme states of zero and infinite conductances respectively. In the present work we show that all Stucki's results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting in the simultaneous maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.

    Energy and entropy of relativistic diffusing particles

    Full text link
    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.Comment: 14 pages,some formulas correcte

    Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time

    Full text link
    To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations and the solution for the spectral functio
    • …
    corecore